A More General Abc Conjecture

نویسندگان

  • Paul Vojta
  • PAUL VOJTA
چکیده

In this note we formulate a conjecture generalizing both the abc conjecture of Masser-Oesterlé and the author’s diophantine conjecture for algebraic points of bounded degree. We also show that the latter conjecture implies the new conjecture. As with most of the author’s conjectures, this new conjecture stems from analogies with Nevanlinna theory. In this particular case the conjecture corresponds to relacing the usual counting function of Nevanlinna theory with a truncated counting function. In particular, the abc conjecture of Masser and Oesterlé corresponds to Nevanlinna’s Second Main Theorem with truncated counting functions applied to the divisor [0] + [1] + [∞] on P . The first section of this paper introduces the notation that will be used throughout the paper. Section 2 formulates the new conjecture and discusses some examples related to the new conjecture, including an “ abcde . . . conjecture” and a conjecture of Buium. The third and final section of this paper shows that the new conjecture is implied by the (apparently weaker) older conjecture without truncated counting functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RELAXATIONS OF THE ABC CONJECTURE USING INTEGER k ’TH ROOTS

Weakened forms of the ABC conjecture are defined in terms of the upper k’th root functions. These weakened forms, with quite small explicit values of their parameters, are shown to imply the asymptotic Fermat, Beale, general Fermat, and Catalan conjectures, that there exist an infinite number of non–Wieferich primes, that there exist only finitely many consecutive powerful numbers, Hall’s conje...

متن کامل

Congruence ABC implies ABC

The ABC conjecture of Masser and Oesterlé states that if (a, b, c) are coprime integers with a+ b+ c = 0, then sup(|a|, |b|, |c|) < cǫ(rad(abc)) 1+ǫ for any ǫ > 0. In [2], Oesterlé observes that if the ABC conjecture holds for all (a, b, c) with 16|abc, then the full ABC conjecture holds. We extend that result to show that, for every integer N , the “congruence ABC conjecture” that ABC holds fo...

متن کامل

Another generalization of Mason’s ABC-theorem

The well-known ABC-conjecture is generally formulated as follows: The ABC-conjecture. Consider the set S of triples (A, B, C) ∈ N 3 such that ABC = 0, gcd{A, B, C} = 1 and A + B = C Then for every ǫ > 0, there exists a constant K ǫ such that C ≤ K ǫ · R(ABC) 1+ǫ for all triples (A, B, C) ∈ S, where R(ABC) denotes the square-free part of the product ABC. The ABC-conjecture is studied in many pap...

متن کامل

The Abc Conjecture Implies Roth’s Theorem and Mordell’s Conjecture

We present in a unified way proofs of Roth’s theorem and an effective version of Mordell’s conjecture, using the ABC conjecture. We also show how certain stronger forms of the ABC conjecture give information about the type of approximation to an algebraic number.

متن کامل

Frankl's Conjecture for a subclass of semimodular lattices

 In this paper, we prove Frankl's Conjecture for an upper semimodular lattice $L$ such that $|J(L)setminus A(L)| leq 3$, where $J(L)$ and $A(L)$ are the set of join-irreducible elements and the set of atoms respectively. It is known that the class of planar lattices is contained in the class of dismantlable lattices and the class of dismantlable lattices is contained in the class of lattices ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998